Red Squares Everywhere Mac OS
Collect the green squares and avoid the red ones! A game for SEGA Dreamcast, Windows, Mac OS, Android, and Nintendo 3DS - c99koder/DCSquares. Anything enclosed with a red square has an option to add a menu bar icon, some even allow for further customization. Everything in red will let you add an icon to the menu bar. The preferences are laid out in four rows, representing the following (more or less) categories: personal, hardware, Internet and wireless, and system.
Circle with a line through it
Learn what to do if your Mac starts up to a circle with a line through it (prohibitory symbol).
Question mark
Learn what to do if your Mac starts up to a question mark.
Options with a gear icon
Learn what to do if your Mac starts up to Options with a gear icon.
Blank (empty) screen
Learn what to do if your Mac starts up to a blank screen, such as an empty gray, black, or blue screen.
Apple logo
Learn what to do if your Mac starts up to an Apple logo or progress bar.
Globe with alert symbol
A globe with an exclamation point means that your Mac tried to start up from macOS Recovery over the Internet, but couldn't. Learn what to do if your Mac can't start up from macOS Recovery.
Lock icon
If your Mac is using a firmware password, the lock icon appears when you try to start up from another disk or volume, such as an external drive or macOS Recovery. Enter the firmware password to continue.
System lock PIN code
Your Mac asks for a PIN code when it has been remotely locked using Find My. Enter the four-digit or six-digit passcode to continue.
Login window
At the login window, enter your user account password to log in to your Mac. If FileVault is turned on, this also unlocks your disk. You might see a default desktop picture in the background, which might change to your chosen desktop picture when you select your account.
Thunderbolt, USB, or FireWire symbol
Red Squares Everywhere Mac Os X
A large Thunderbolt , USB , or FireWire symbol against a dark background means that your Mac is in target disk mode.
Learn more
- Learn what to do if your Mac displays a message that it restarted because of a problem.
- When starting up from Windows using Boot Camp, your Mac doesn't show an Apple logo or the other macOS screens in this article.
A Gentle Guide to Using PennSim
0. Conventions
Throughout this document, commands that you have to type or buttonsyou have to click will appear like so.
1. Getting Java
PennSim is written in Java, which means Java must beinstalled on the computer you plan to use. Java should already beavailable on all public SEAS machines. If you plan to work on yourpersonal machine, you may need to install Java yourself. You can download Java here. PennSim requires Java 1.5 or newer (which is available forWindows, Linux, and Mac OS X).
2. Getting the Simulator
Next, you need to download the simulator. It is distributed in a .jarfile (short for Java ARchive). In Windows or on a Mac, youshould be able to double-click the .jar file to launch thesimulator. You can also launch the simulator from the command line ofyour operating system (such as Linux) by using the command
If you have any problems starting the simulator, please post yourproblems to the CSE240 discussion forum. This will ensure thefastest response.
Autocad reader for mac. We will not be distributing the source to the simulator, becausea later assignment will build parts of the simulator in C (which issimilar to Java in many ways).
3. Assembling and Loading Software
Now the simulator is running, but to get it to do anythinginteresting, we need to load some software. The first piece ofsoftware we should load is, naturally, an operating system. The LC-3operating system is very basic: it handles simple I/O operations andis responsible for starting other programs, such as the ones you'llwrite for this homework. Download the LC-3 OShere.
So that you can understand what the operating system does, wedistribute it as an assembly language file. But the machinedoesn't understand assembly directly; we first have to 'assemble' theassembly code into machine language (a .obj file containing binarydata). PennSim has a built-in assembler, accessible (as isthe case for most of its functionality) via the Command Line text box(see screenshot above). To assemble the operating system, type
Now we can load the lc3os.obj file into the simulator, either via thecommand load lc3os.obj or by going to theFile menu and selecting
Now assemble and load the solution file forProblem 0 into the simulator. The memory has changed again, but youmay not notice since the relevant memory addresses (starting at x3000)aren't visible unless you've scrolled the screen. User-level programs(i.e., non-OS code) start, by convention, at x3000. If you type thecommand list x3000 the memory view willjump to x3000 and you can see the 1-instruction solution to thisproblem.
4. Running Code
To actually run code, you can use the 4 control buttons at the top ofthe simulator, or type commands into the command line interface (thecommand names are the same as the buttons). Note that the PC registeris set to x0200, which is the entry point to the operating system byconvention. Recall that the solution code for Problem0 increments the value in R2 and puts the result in R5. Set thevalue in R2 to something you fancy, either by double-clicking it inthe Registers section, or via the command set R2(value). Now, actually run the code by hitting the
4a. Running Code..slowly
Clearly, some things are going on here. But to determine what they areexactly, we need to slow the execution down. You can hit the
Let's try running the program again, but just one instruction at atime. Notice that from the halted state, the PC points to aninstruction that will branch us right back to the start of theoperating system. So we can hit next onceand start the cycle over again. Note that registers are as we leftthem. You can put a new value into R2 if you want, and the old valuein R5 will get overwritten. Sometimes, having old values lying aroundeverywhere can be problematic, and it's good to do a real 'reboot' viathe reset command. This clears allof memory and resets registers to default values, so you have toreload the OS and your program.
You can keep next-ing over the OS code;eventually you will hit the RTT instruction at location x0205 thatjumps to the start of our program at x3000. Now you can see the 2instructions that constitute our program. You can see the ADD beingperformed, and then the machine gets halted again.
Continue running the increment-R2-into-R5 code until, if ever, you getbored. Then move on to Problem 1.
4b. Running Code..for a little while
Going one instruction at a time is great, but somewhat tedious. Weneed a happy medium between not knowing what's going on at all, andhaving to go through every single instruction, whether we care aboutit or not. Breakpoints are this happy medium.
A breakpoint is set at a particular memory location, and tells thesimulator to stop execution upon reaching that point. Memory locationswith breakpoints set on them show up in the simulator with a redsquare in the 'BP' column. It is left as an exercise to the reader todetermine what 'BP' stands for. You can set a breakpoint at a memorylocation with the command break set (memorylocation), or by checking the checkbox in the 'BP' column. Youcan get rid of a previously-set breakpoint with the command
When you tell the simulator to continue,it will only run until it hits a breakpoint (or the system halts orhas an error). When you are writing and testing your answer forProblem 1, you can use the command breakpointset START to set a breakpoint at the beginning of yourcode. Then, you can use continue to skipall the OS code and get to the instructions you care about. Then youcan next over your code to make sure it'sdoing what you want it to do.
5. Running Scripts
Now try running some of the test scripts that we've provided forProblem 1. You can do this with the command
Scripting is also a great way of testing your code. You can write afew test cases and check your code easily, especially for the problemsin this homework which are pretty easy to test. Use the
6. General Help and Advice
This document doesn't cover all of the simulator's functionality; foran extended discussion of usage see the PennSim Manual. For quick help within the simulator itself,you can use the help command to see alist of all of PennSim's commands. Use help(command) to get help on a specific command.
War theatre: blood of winter mac os. Many of the PennSim commands have shortcuts -
The PennSim Command Line has a history feature - use the up and downarrow keys to go backwards and forwards through the commands you'vepreviously entered.
If you resize the simulator window to make it bigger, the CommandlineOutput Pane will grow. If you have a small screen and the CommandlineOutput Pane still isn't big enough, you can open an external, resizableCommand Output Window by selecting the OpenCommand Output Window option from the
If you have trouble running the simulator, try checking the classforum in case someone else has had the same problem as you. Postingyour questions to the forum is a good idea in general, because thenother people can learn from your experience. The forum is checkedregularly by Professor Lewis and the TAs. Of course, you can alsoemail cse240@seas, or drop by office hours. Nelly cootalot - the fowl fleet mac os.
If you think you've found a bug in the simulator (which is,theoretically speaking, a possibility:), check the Simulator distribution/bugspage to see if you've found a known bug with a workaround. Ifyou've found a new bug, post to the forums (if you want to embarrass us)or email cse240@seas (if you're feeling kinder). Be sure to include thefollowing:
- A description of the bug.
- What you were doing that caused the bug to occur.
- What version of the simulator you were using. Find this via the simulator'sAbout menu.
- What version of Java you were using. Find this by running
java -version from the commandline of your OS. - What operating system you were using - Windows, Linux, Mac.